
P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 267–274, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Distributed Data Storage Architecture for Event
Processing by Using the Globus Grid Toolkit

Han Fei1, Nuno Almeida1, Paulo Trezentos1, Jaime E. Villate2, and
Antonio Amorim3

1 ADETTI, Edificio ISCTE, University of Lisbon,
Avenida das Forças Armadas,

1600-082 Lisbon, Portugal
{Han.Fei, Nuno.Almeida, Paulo.Trezentos}@iscte.pt

2 Department of Physics
School of Engineering,

 University of Porto
villate@fe.up.pt

3 Faculdade de Ciencias, University of Lisbon,
Campo Grande, Edificio C8, sala 8.3.05,

1749-016 Lisbon, Portugal
Antonio.Amorim@fc.ul.pt

Abstract. In this paper we discuss a Grid-based Event Processing System
(GEPS). Data intensive problems broadly exist in many scientific computational
areas; usually their needs for super storage and computing capacities are diffi-
cult to be fully satisfied. Meanwhile the Globus Toolkit has become the de facto
standard of building high performance distributed computing environments.
Event processing and filtering is a kind of data intensive problem in high-energy
physics area. Using the Globus grid toolkit, we have constructed the GEPS sys-
tem, which provides web-based access to grid computing environments for
event processing. Performance result indicates that event processing and filter-
ing can be effectively implemented on GEPS.

1 Introduction

In many scientific disciplines, the need for terabyte data storage, processing and trans-
ferring is emerging as a crucial problem; nevertheless large computing and storage
facilities are always scarce resources. The storage and computing capabilities are often
temporarily and geographically distributed unevenly, sometimes redundant in one
place meanwhile scarce in other places. With the scientific and technical applications
becoming more and more complicated and sophisticated, many researchers, working
and living in different places, have to not only cooperate in the same research project
but must also access distributed computing resources.

It is unlikely that conventional methods can meet the demands of providing and
sharing these resources. A blueprint of computational grids leveled at addressing these
difficulties has been proposed. [1]

268 H. Fei et al.

A Grid [2] is super-computing net, which can connect distributed mainframe com-
puters, super-computers, as well as large numbers of desk top computing devices into
easy-to-use computing facilities.

2 The LHC Computing Problem

In the Large Hadron Collider (LHC) accelerator at CERN, there are 109 collisions per
second taking place per second. Each collision contains about 1 MB of information.
One single collision is called an "event". Each event is recorded by surrounding parti-
cle detectors for later processing and filtering to pick out the physically interesting
ones. Events are recorded at a typical rate of 100 Hz. Considering the data intensive
aspect of event processing, computational grids are a possible solution.

2.1 Related Work

Gfarm (Grid Data Farm) is an event processing project [3][4] at KEK (High Energy
Accelerator Research Organization) and ICEPP (International Center for Particle
Physics, the University of Tokyo). A large scale distributed Gfarm file is divided into
several fragments and distributed across the disks in the Gfarm file system. A Gfarm
file is a logical aggregation of physical file fragments distributed over many CPU
nodes. The processing jobs access the Gfarm files through the Gfarm parallel I/O
library, and the job executes in parallel at each node where the physical file fragments
reside. The Gfarm file system daemon runs on each node to facilitate remote file op-
eration with access control. When a job is submitted into the Gfarm server, it is redis-
tributed to nodes, which contain the fragment database files. When the job is finished,
the results will be retrieved across the network.

Parallel ROOT (PROOF) [5] is another event processing system. The ROOT client
session creates a master server on a remote cluster, and then the master server in turn
creates slave servers on all the nodes in the cluster. All the slave servers execute user
job in parallel. The master server distributes the event data packets to every slave
server, carefully adjusting the packet size such that the slower slave servers get
smaller data packets than faster slave servers. PROOF uses a TChain object to provide
a single logical view of many geographically distributed physical files. The master
server keeps a list of all generated packets per slave, so in case a slave failed then
remaining slaves can reprocess its packets.

An application in Gfarm system need to use Gfarm I/O library to access Gfarm file,
so already existing applications need to be changed and recompiled, and this change
means the application will be Gfarm Only. In the case of PROOF, because the
PROOF toolkit is relatively reliant on specific grid techniques, the application can’t
always utilize the latest grid feature, which can be available only after PROOF pro-
vides a realization of that feature. For solving these inconveniences, we propose a
distributed Grid-based approach, which facilitates intensive event raw data storage and
processing, while providing a uniform application staging interface.

A Distributed Data Storage Architecture for Event Processing 269

3 GEPS Prototype

In GEPS system we make use of the Grid infrastructure, a back-end database, LDAP
directory query, and PHP script web interface. The scalability of GEPS can be easily
obtained through freely adding into or picking out any grid computing and storage
node. GEPS works like a portal. Behind the friendly appearance of GEPS, many Grid
related details are well hidden. Geographically distributed physicists can easily coop-
erate over the same event processing project, share dispersed events data file, stage
jobs, query job status, share computing resources, transfer data file, and visualize
events filtering results.

3.1 Introduction of the Events Application

Event processing application is programmed in C++ by using the Root Toolkits [6].
Root is an object-oriented framework, aimed at solving the data analysis challenges of
the high-energy physics discipline. It provides a large collection of specific utilities to
manage information in an efficient way. Root provides not only an application pro-
gramming interface (API), but a integrated Root tree class data file visualization envi-
ronment. The creation of the Root data file has several steps. The first step is to create
a structure to store all the raw information of the events. This process consists of the
creation of a shared library, which contains all the variables of the event, track, verti-
ces, as well as relation objects.

If the shared library produced in the first step works well, then the next step is to
create a Root tree to storage all the objects presented in the raw information file. The
Root tree class is optimized to reduce storage space usage and enhance accession
speed. Inside the Root tree there is one branch with all events, inside this branch are
all event variables that include the tracks, vertices, and relations.

After all the information appears in the Root tree, now it is the time for scrutiniz-
ing, one by one, which event will be the candidate that meets the processing standard.
The calibration procedure based on the processing standard will be done on each
event, then the result will be stored in a new tree with the same structure.

Based on the Grid-enabled computing net, we can divide event raw data into differ-
ent storage parts, which can be stored in geographically distributed Grid resource
nodes. After that, we can stage processing and filtering procedures in a parallel man-
ner, monitor the application running status, collect results, merge the different results
data into final data file, and visualize the final data.

3.2 The GEPS Architecture

Figure 1 describes the GEPS architecture. GEPS has an easy-to-use and friendly inter-
face, which is programmed in the PHP script language. No matter where the end user
is, the services of GEPS can be easily approached through Internet. After logging into
the main-page, several optional functions can be chosen by the end user. The user can

270 H. Fei et al.

request the summarized or detailed information of the available Grid resources. The
user can simply fill in a job description form to express some needed information
about the job, such as: what is the executable, where does the executable reside, to
which Grid nodes is the executable going to be submitted, where is the raw data file,
where does the end user want the output to be stored. After filling in the specification
of one job, the user can continue to describe another job. The next step is simply push
the "submit" button, then jobs will be submitted to grid nodes. After submitting all
jobs, the user can continuely monitor the running status of submitted jobs.

Fig. 1. The GEPS architecture. The user can use GEPS through a PHP scripted interface, which
hides many realization details from the outside user.

When the jobs have done, the distributed event result data files will be automati-
cally merged to form the final result, which will be stored in the user specified site.
Finally the user can utilize the Root visualization tool to see the event processing and
filtering result.

The end user interface is programmed in the PHP script language. It will receive
the job descriptions provided by the end user, and it will insert the new job into the
PostgreSQL database. If the end user wants to query information about the grid com-
puting environment, the PHP scripts will call a function to query a GRIS ldap server.

Before submitting the executables, the event raw data needs to be copied to the grid
nodes, according to the demands of the job specification.

The grid job submission engine will parse the job specification tuple in the Post-
greSQL database, analyze the job executing environment and raw event data distribu-
tion demands, synthesize the RSL sentences, submit the jobs, monitor the status of
submitted job.

User

Php interface

Postgre Database

Query GRIS

Staging Job

Retrieve result

Merger events

Prepare event data

Grid nodes

Job submit engine

A Distributed Data Storage Architecture for Event Processing 271

4 The GPES Prototype Implementation

4.1 The Computational Grids Environment

The Globus Grid toolkit evolved out of the I-WAY high performance distributed com-
puting experiment [7]. Before the Globus Grid became the de facto high performance
computing environment, there were other candidate grid architectures, include using
object-based technology and web technology [8].

Table 1. Globus components in GEPS.

Component Usage
GRAM Executable staging
GRIS in MDS Query Grid node information
GASS Transfer raw data, retrieve remote results

Table 1 lists the grid components used in GEPS. In the Grid job submission engine,
the new job specification tuples are selected from the back-end PostgreSQL database.
For each new job, by parsing the job specification tuple, a job Resource Specification
Language (RSL) sentence is formulated, then a raw data file is transferred (by using
GASS components) in accordance with the setting of relevant resources, and then the
GRAM component (globus-gram-client) is used for remotely submitting and manag-
ing job. The run time stdout and stderr is defined in the RLS sentence. After all sub-
mitted jobs having finished, GASS file access functions are used for retrieving distrib-
uted event results.

4.2 Query GRIS LDAP Server

Monitoring Discovering Service (MDS). The Globus Toolkit has provided an infor-
mation Monitoring and Discovery Service (MDS)[9], which acts as a resource infor-
mation registry and discovery agent. The MDS includes a standard, configurable in-
formation provider framework called a Grid Resource Information Service (GRIS).
GRIS is implemented as an OpenLDAP[10][11] server. Each Grid node can run a
local GRIS.

Through GEPS, the end user can query properties of the grid nodes, such as how
many processors are available at this moment, what bandwidth is provided, etc. The
MDS provides two interfaces: interactive and programmatic. By default, a GRIS
service is automatically configured to port 2135. In our GEPS, the grid-info routine
obtains the overall Grid node information by querying this port through the LDAP
protocol. The PHP script will call the grid-info routine to get the results.

272 H. Fei et al.

Fig. 2. Querying Grid node resource information through the LDAP protocol. In GEPS the end
user selects interesting objects or just simply makes a choice of default objects. The PHP scripts
then call Grid-info. Grid-info will send LDAP queries to the GRIS in each Grid node and get
the available resources list.

5 Experiment and Results

From August to October in 2002, we tested 13 groups of raw event data, and with a
total of 130 experiment executions (for decreasing the effect of system and network
latency in executable staging and data transfer). The current GEPS demonstration
prototype temporarily consists of two server, gandalf and hobbit. Because the GEPS
topology structure has the feature of scalability, in the future more nodes can be easily
incorporated. One of the advantages of computational grids is that any part can be
easily changed without any global effect.

Different granularities of event data will dramatically affect the overall perform-
ance of the GEPS system. This is reasonable, because with many smaller files of raw
event data, the portion of system cost dedicated to raw data transfer will become larger
in total execution time. Based on the event data file size, Figure 3 gives the relation
between running only on hobbit and running in parallel between gandalf and hobbit.
The unit on Y-axis is time cost in second, and the unit in X-axis is the number of
events in raw event data file. In raw event file each event is about 1M bytes in size.
From the illustration we can easily see that the data file size of approximate 2000
events is a watershed. Data files consisting of less than 2000 events run in tightly
coupled computing environments will have better performance. But usually our event
raw data files can be easily much larger than 2000 events. From the results illustrated
in Figure 3 we know that to some extent our GEPS has provided better performance.

The GEPS network connection is fast Ethernet. The user defines the raw event data
distribution by using the RSL sentence. Before a job can be submitted to the grid gate-
keeper through the grid client API, the raw event data will firstly be transferred to the
grid nodes in accordance with the raw event data distribution specification. GEPS
currently uses Globus GASS file access API for transferring raw data and result file

Php scripts

Grid-info: Query
GRIS

GRIS (node 1)

GRIS (node 2)

GRIS (node n)

A Distributed Data Storage Architecture for Event Processing 273

between gird nodes. Figure 3 only gives the comparison of processing time cost be-
tween GEPS and hobbit.

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

Number of events per file (Each event is about 1Mbytes)

E
ve

nt
s

pr
oc

es
si

ng
 ti

m
e

sc
al

e
(U

ni
t:

 s
ec

on
d)

GEPS

Hobbit

Fig. 3. Performance in GEPS & hobbit with different event raw data file sizes.

6 Conclusions and Future Work

We have described the GEPS prototype, which provides an integrated meta computing
environment for event processing and filtering. In GEPS, Grid related detail and rele-
vant middleware specifics have been hidden from the end user. GEPS facilitates the
scalability of intensive event data storage. Using GEPS, physicists can easily admin-
ister and share distributed data and take advantage of distributed computing resources.
This prototype has incorporated to date innovative Grid concepts and mechanisms.

The smaller bandwidth and the larger latency due to the geographical distribution
of the Grid computational resources are the main reason of parallel inefficiency. We
are working on adding GridFTP into our prototype. Because multiple TCP streams and
proper TCP buffer sizes are very important to obtaining better performance in TCP
wide area links [12], we are trying to add this feature into the GEPS prototype. We are
also exploring the feasibility of solving other physics problems in the GEPS prototype
environment.

Acknowledgements. This work was supported by Fundação da Ciência e Técnologia
under the grant CERN/P/FIS/43719/2001. The first author gratefully acknowledges the
postdoctoral fellowship by the FCT. The third author would like to thank ADETTI
(Associação para o Desenvolvimento das Telecomunicações e Técnicas de
Informática) for their support to this work.

274 H. Fei et al.

References

1. I.Foster and C. Kesselman: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann (1999)

2. S. Barnard, R. Biswas, S. Saini, R. Van der Wijngaart, M. Yarrow, L. Zechter, I. Foster,
O. Larsson: Large-Scale Distributed Computational Fluid Dynamics on the Information
Power Grid using Globus. Proc. of Frontiers ’99 (1999)

3. Y.Morita, O.Tatebe, S.Matsuoka, N.Soda, H.Sato, Y.Tanaka, S.Sekiguchi, S.Kawabata,
Y.Watase, M.Imori, T.kobayashi: Grid Data Farm for Atlas Simulation Data Challenges,
Proceedings of CHEP 2001 (International Conference on Computing in High Energy and
Nuclear Physics) (2001) 699–701

4. Osamu Tatebe, Youhei Morita, Satoshi Matsuoka, Noriyuki Soda, Hiroyuki Sato, Yoshio
Tanaka, Satoshi Sekiguchi, Yoshiyuki Watase, Masatoshi Imori, Tomio Kobayashi: Grid
Data Farm for Petascale Data Intensive. Electrotechnical Laboratory, Techinical Report,
TR-2001-4. http://datafarm.apgrid.org

5. René Brun, Fons Rademakers: Distributed Parallel Interactive Data Analysis Using the
Proof System. Proceedings of CHEP 2001 (International Conference on Computing in
High Energy and Nuclear Physics) (2001) 704–707

6. http://root.cern.ch
7. I. Foster, J. Geisler, W. Nickless, W. Smith, S. Tuecke: Software Infrastructure for the I-

WAY High Performance Distributed Computing Experiment. Proc. 5th IEEE Symposium
on High Performance Distributed Computing (1997) 562–571

8. S. Brunett, K. Czajkowski, S. Fitzgerald, I. Foster, A. Johnson, C. Kesselman, J. Leigh, S.
Tuecke: Application Experiences with the Globus Toolkit. Proceedings of 7th IEEE Symp.
on High Performance Distributed Computing, July 1998

9. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S. Tuecke: A Direc-
tory Service for Configuring High-Performance Distributed Computations. Proc. 6th IEEE
Symposium on High-Performance Distributed Computing (1997) 365–375

10. Heinz Johner, Michel Melot, Harri Stranden, Permana Widhiasta: LDAP Implementation
Cookbook. SG24-5110-00, IBM. International Technical Support Organization,
http://www.redbooks.ibm.com

11. Heinz Johner, Larry Brown, Franz-Stefan Hinner, Wolfgang Reis, Johan Westman. Under-
standing LDAP. SG24-4986-00, IBM. International Technical Support Organization,
http://www.redbooks.ibm.com

12. J. Lee, D. Gunter, B. Tierney, B, Allcock, J. Bester, J. Bresnahan, S. Tuecke: Applied
Techniques for High Bandwidth Data Transfers Across Wide Area Networks. Proceedings
of International Conference on Computing in High Energy and Nuclear Physics, Beijing,
China, September (2001)

	Introduction
	The LHC Computing Problem
	Related Work

	GEPS Prototype
	Introduction of the Events Application
	The GEPS Architecture

	The GPES Prototype Implementation
	The Computational Grids Environment
	Query GRIS LDAP Server

	Experiment and Results
	Conclusions and Future Work
	References

